answer chapter 2 MAT235 module 1 (page 153 - page 168) - PDF Flipbook

answer chapter 2 MAT235 module 1 (page 153 - page 168)

112 Views
24 Downloads
PDF 267,072 Bytes

Download as PDF

REPORT DMCA


MAT235- CALCULUS II FOR ENGINEERS / Chapter 2 : Indeterminate Form and Improper Integral

Examples from Previous Semester Papers Example 1 : DEC 2019/ MAT235/ Q2a/ 6 marks π‘₯𝑒 2π‘₯ βˆ’π‘₯ π‘₯β†’0 1βˆ’π‘π‘œπ‘  2π‘₯

Use L’Hopital’s Rule to evaluate lim Solution :

.

Use L’Hopital’s Rule :

βž‹

π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘‘π‘–π‘Žπ‘‘π‘’ π‘›π‘’π‘šπ‘’π‘Ÿπ‘Žπ‘‘π‘œπ‘Ÿ lim ࡬ ΰ΅° π‘₯β†’0 π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘‘π‘–π‘Žπ‘‘π‘’ π‘‘π‘’π‘›π‘œπ‘šπ‘–π‘›π‘Žπ‘‘π‘œπ‘Ÿ

π‘₯𝑒 2π‘₯ βˆ’ π‘₯ π‘₯𝑒 2π‘₯ βˆ’ π‘₯ lim ( ) = lim ( ) π‘₯β†’0 1 βˆ’ π‘π‘œπ‘  2π‘₯ π‘₯β†’0 1 βˆ’ π‘π‘œπ‘  2π‘₯

➊

Direct substitution gives indeterminate 0 form 0

= lim ( π‘₯β†’0

= lim ( π‘₯β†’0

= lim ( π‘₯β†’0

= lim ( π‘₯β†’0

= lim ( π‘₯β†’0

= lim ( π‘₯β†’0

= =

𝑣𝑒′ + 𝑒𝑣′ βˆ’ 1 ) 0 βˆ’ (βˆ’2 𝑠𝑖𝑛 2π‘₯)

𝑒=π‘₯ 𝑒′ = 1

➌

𝑒 2π‘₯ + 2π‘₯𝑒 2π‘₯ βˆ’ 1 ) 0 βˆ’ (βˆ’2 𝑠𝑖𝑛 2π‘₯)

➍

2𝑒 2π‘₯ + 𝑣𝑒′ + 𝑒𝑣′ βˆ’ 0 ) 4 π‘π‘œπ‘  2π‘₯

2𝑒 2π‘₯ + 2𝑒 2π‘₯ + 4π‘₯𝑒 2π‘₯ βˆ’ 0 ) 4 π‘π‘œπ‘  2π‘₯

4𝑒 0 + 0 4 π‘π‘œπ‘ (0)

4(1) + 0 4(1)

Direct substitution still gives indeterminate 0 form 0

𝑒 2π‘₯ + 2π‘₯𝑒 2π‘₯ βˆ’ 1 ) 2 𝑠𝑖𝑛 2π‘₯

4𝑒 2π‘₯ + 4π‘₯𝑒 2π‘₯ ) 4 π‘π‘œπ‘  2π‘₯

𝑣 = 𝑒 2π‘₯ 𝑣′ = 2𝑒 2π‘₯

➎

Again, use L’Hopital’s Rule : π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘‘π‘–π‘Žπ‘‘π‘’ π‘›π‘’π‘šπ‘’π‘Ÿπ‘Žπ‘‘π‘œπ‘Ÿ lim ࡬ ΰ΅° π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘‘π‘–π‘Žπ‘‘π‘’ π‘‘π‘’π‘›π‘œπ‘šπ‘–π‘›π‘Žπ‘‘π‘œπ‘Ÿ

π‘₯β†’0

𝑒 = 2π‘₯ 𝑒′ = 2

𝑣 = 𝑒 2π‘₯ 𝑣′ = 2𝑒 2π‘₯

no more indeterminate form. So, at this point, we can use direct substitution (no more L’Hopital’s Rule)

=1#

Β© Amirah 2022

153

MAT235- CALCULUS II FOR ENGINEERS / Chapter 2 : Indeterminate Form and Improper Integral

Example 2 : JUNE 2019/ MAT235/ Q2a/ 7 marks x

  x οƒΆοƒΆ Evaluate lim  sin οƒ· οƒ·οƒ· by using L’Hospital’s Rule. x β†’0   2 οƒΈοƒΈ

➊

Solution :

βž‹ ➌

Take ln on both sides

π‘₯ π‘₯ 𝑙𝑒𝑑 𝑦 = (𝑠𝑖𝑛 ( )) 2 π‘₯ π‘₯ 𝑙𝑛(𝑦) = 𝑙𝑛 (𝑠𝑖𝑛 ( )) 2 π‘₯ 𝑙𝑛(𝑦) = π‘₯ 𝑙𝑛 (𝑠𝑖𝑛 ( )) 2 π‘₯ 𝑙𝑛 (𝑠𝑖𝑛 ( )) 2 𝑙𝑛(𝑦) = π‘₯ βˆ’1

Direct substitution gives indeterminate form 00

➍

π‘₯ 𝑙𝑛 (𝑠𝑖𝑛 ( )) 2 ) lim (𝑙𝑛(𝑦)) = lim ( π‘₯β†’0 π‘₯β†’0 π‘₯ βˆ’1

➏ LHS : There is no variable β€˜x’ to substitute, so after direct substitution, we got 𝑙𝑛(𝑦) βž‹ (no more lim)

𝑙𝑛(𝑦) = lim

π‘₯β†’0

π‘₯ 1 π‘₯ βˆ™ π‘π‘œπ‘  (2) βˆ™ 2 𝑠𝑖𝑛 ( ) 2 βˆ’π‘₯ βˆ’2

π‘₯ π‘π‘œπ‘‘ ( ) 1 𝑙𝑛(𝑦) = βˆ’ lim ( βˆ’22 ) 2 π‘₯β†’0 π‘₯

𝑑𝑖𝑓𝑓 π‘›π‘’π‘š lim ࡬ ΰ΅° π‘₯β†’0 𝑑𝑖𝑓𝑓 π‘‘π‘’π‘›π‘œ

𝑙𝑛(𝑦) = βˆ’lim (

2π‘₯

π‘₯ ) 𝑠𝑒𝑐 2 ( ) 2 π‘₯ 𝑙𝑛(𝑦) = βˆ’lim (2π‘₯ π‘π‘œπ‘  2 ( )) π‘₯β†’0 2 π‘₯β†’0

𝑙𝑛(𝑦) = 0 𝑦 = 𝑒0 𝑦=1

Β© Amirah 2022

Note : Remember!..our goal now is to write into the form of 0 ∞ fraction or 0

∞

So, the next step we can solve the limits using L’Hopital’s Rule

Use L’Hopital’s Rule :

βž‘

π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘‘π‘–π‘Žπ‘‘π‘’ π‘›π‘’π‘šπ‘’π‘Ÿπ‘Žπ‘‘π‘œπ‘Ÿ lim ࡬ ΰ΅° π‘₯β†’0 π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘‘π‘–π‘Žπ‘‘π‘’ π‘‘π‘’π‘›π‘œπ‘šπ‘–π‘›π‘Žπ‘‘π‘œπ‘Ÿ

Direct substitution gives indeterminate 0 form 0

𝐻𝑒𝑛𝑐𝑒,

∞

Direct substitution gives indeterminate ∞ form .

➐

1 𝑙𝑛(𝑦) = βˆ’ lim ( ) 2 π‘₯β†’0 π‘‘π‘Žπ‘› (π‘₯ ) 2

Again, use L’Hopital’s Rule :

After we success write into fraction, the we take β€˜lim’ on both sides

)

π‘₯2

βž’

∞

➎

1 π‘₯ 𝑙𝑛(𝑦) = βˆ’ lim (π‘₯ 2 π‘π‘œπ‘‘ ( )) 2 2 π‘₯β†’0

2π‘₯ 1 𝑙𝑛(𝑦) = βˆ’ lim ( ) 2 π‘₯β†’0 1 𝑠𝑒𝑐 2 (π‘₯ ) 2 2

0

If there are powers of f(x), first we need to take ln on both sides (so that we can change to multiplication using the properties of logarithm, then change into fraction)

1

(

So, try to adjust, until we can write into the 0 ∞ form of or

π‘₯ π‘₯ lim (𝑠𝑖𝑛 ( )) = lim (𝑦) π‘₯β†’0 π‘₯β†’0 2 π‘₯ π‘₯ lim (𝑠𝑖𝑛 ( )) = lim (1) π‘₯β†’0 π‘₯β†’0 2 π‘₯ π‘₯ lim (𝑠𝑖𝑛 ( )) = 1 # π‘₯β†’0 2

154

MAT235- CALCULUS II FOR ENGINEERS / Chapter 2 : Indeterminate Form and Improper Integral

Example 3a : DEC 2018/ MAT235/ Q2a/ 5 marks Find lim (x ln x ) by using L’Hospital’s Rule. x β†’0

Solution : 𝑙𝑛 π‘₯ π‘™π‘–π‘š (π‘₯ 𝑙𝑛 π‘₯) = π‘™π‘–π‘š ࡬ βˆ’1 ΰ΅° π‘₯β†’0 π‘₯β†’0 π‘₯ 1 ( ) = π‘™π‘–π‘š ( π‘₯βˆ’2 ) π‘₯β†’0 βˆ’π‘₯

1 = βˆ’π‘™π‘–π‘š (π‘₯ 2 ࡬ ΰ΅°) π‘₯β†’0 π‘₯

= βˆ’π‘™π‘–π‘š (π‘₯) π‘₯β†’0

= 0#

Β© Amirah 2022

155

MAT235- CALCULUS II FOR ENGINEERS / Chapter 2 : Indeterminate Form and Improper Integral

Example 3b : DEC 2018/ MAT235/ Q2b/ 6 marks ο‚₯

Solve the improper integrals

 (x 1

x 2

+5

)

3

∞

dx .∫1

π‘₯ 𝑑π‘₯ (π‘₯ 2 +5)3

Solution :

∫

(π‘₯ 2

π‘₯ 𝑑π‘₯ = ∫ π‘₯(π‘₯ 2 + 5)βˆ’3 𝑑π‘₯ + 5)3 = ∫ π‘₯ π‘’βˆ’3

𝑑𝑒 2π‘₯

1 = ∫ π‘’βˆ’3 𝑑𝑒 2

1 π‘’βˆ’2 = ( )+𝐢 2 βˆ’2 =βˆ’

=βˆ’ ∞

𝑒 = π‘₯2 + 5

𝑑𝑒 = 2π‘₯ 𝑑π‘₯ 𝑑𝑒 𝑑π‘₯ = 2π‘₯

1 +𝐢 4𝑒2

4(π‘₯ 2

1 +𝐢 + 5)2

𝑏 π‘₯ π‘₯ ∫ 𝑑π‘₯ = π‘™π‘–π‘š ∫ 𝑑π‘₯ 2 3 π‘β†’βˆž 1 (π‘₯ 2 + 5)3 1 (π‘₯ + 5)

= π‘™π‘–π‘š [βˆ’ π‘β†’βˆž

=βˆ’ =βˆ’ =βˆ’

𝑏 1 ] 4(π‘₯ 2 + 5)2 1

𝑏 1 1 π‘™π‘–π‘š [ 2 ] 4 π‘β†’βˆž (π‘₯ + 5)2 1

1 1 1 π‘™π‘–π‘š [ 2 βˆ’ 2 ] 2 π‘β†’βˆž (𝑏 (1 + 5) + 5)2 4 1 1 1 π‘™π‘–π‘š [ 2 βˆ’ ] 4 π‘β†’βˆž (𝑏 + 5)2 36

1 1 = βˆ’ [0 βˆ’ ] 4 36

=

Β© Amirah 2022

1 # (π‘π‘œπ‘›π‘£π‘’π‘Ÿπ‘”π‘’π‘ ) 144

156

MAT235- CALCULUS II FOR ENGINEERS / Chapter 2 : Indeterminate Form and Improper Integral

Example 4 : JUNE 2018/ MAT235/ Q2a/ 7 marks Evaluate lim (sin(2 x )) by using L’Hospital’s Rule. x

x β†’0

Solution : 𝑙𝑒𝑑 𝑦 = (𝑠𝑖𝑛(2π‘₯))π‘₯

𝑙𝑛(𝑦) = 𝑙𝑛(𝑠𝑖𝑛(2π‘₯))π‘₯

𝑙𝑛(𝑦) = π‘₯ 𝑙𝑛(𝑠𝑖𝑛(2π‘₯)) 𝑙𝑛(𝑦) =

𝑙𝑛(𝑠𝑖𝑛(2π‘₯)) π‘₯ βˆ’1

lim (𝑙𝑛(𝑦)) = lim (

π‘₯β†’0

π‘₯β†’0

𝑙𝑛(𝑠𝑖𝑛(2π‘₯)) ) π‘₯ βˆ’1

1 βˆ™ π‘π‘œπ‘ (2π‘₯) βˆ™ 2 𝑠𝑖𝑛(2π‘₯) 𝑙𝑛(𝑦) = lim ( ) π‘₯β†’0 βˆ’π‘₯ βˆ’2 𝑙𝑛(𝑦) = βˆ’2 lim (

π‘π‘œπ‘‘(2π‘₯) ) π‘₯ βˆ’2

𝑙𝑛(𝑦) = βˆ’2 lim (

π‘₯2 ) π‘‘π‘Žπ‘›(2π‘₯)

π‘₯β†’0

𝑙𝑛(𝑦) = βˆ’2 lim (π‘₯ 2 π‘π‘œπ‘‘(2π‘₯)) π‘₯β†’0 π‘₯β†’0

2π‘₯ 𝑙𝑛(𝑦) = βˆ’2 lim ࡬ ΰ΅° π‘₯β†’0 2 𝑠𝑒𝑐 2 (2π‘₯) π‘₯ ΰ΅° 𝑙𝑛(𝑦) = βˆ’2 lim ࡬ 2 π‘₯β†’0 𝑠𝑒𝑐 (2π‘₯) 𝑙𝑛(𝑦) = βˆ’2 lim (π‘₯ π‘π‘œπ‘  2 (2π‘₯)) π‘₯β†’0

𝑙𝑛(𝑦) = 0 𝑦 = 𝑒0 𝑦=1

𝐻𝑒𝑛𝑐𝑒,

lim (𝑠𝑖𝑛(2π‘₯))π‘₯ = lim (𝑦)

π‘₯β†’0

lim (𝑠𝑖𝑛(2π‘₯))π‘₯ π‘₯β†’0

lim (𝑠𝑖𝑛(2π‘₯))π‘₯ π‘₯β†’0

Β© Amirah 2022

π‘₯β†’0

= lim (1) π‘₯β†’0

=1#

157

MAT235- CALCULUS II FOR ENGINEERS / Chapter 2 : Indeterminate Form and Improper Integral

Example 5 : JAN 2018/ MAT235/ Q2a/ 7 marks Find lim (sin 5 x )ln x . 1

x β†’0

+

Solution : 1

𝑙𝑒𝑑 𝑦 = (𝑠𝑖𝑛(5π‘₯))𝑙𝑛π‘₯

1

𝑙𝑛(𝑦) = 𝑙𝑛(𝑠𝑖𝑛(5π‘₯))𝑙𝑛π‘₯

1 𝑙𝑛(𝑠𝑖𝑛(5π‘₯)) 𝑙𝑛π‘₯ 𝑙𝑛(𝑠𝑖𝑛(5π‘₯)) 𝑙𝑛(𝑦) = 𝑙𝑛π‘₯ 𝑙𝑛(𝑦) =

lim+ (𝑙𝑛(𝑦)) = lim+ (

π‘₯β†’0

π‘₯β†’0

𝑙𝑛(𝑠𝑖𝑛(5π‘₯)) ) 𝑙𝑛π‘₯

1 βˆ™ π‘π‘œπ‘ (5π‘₯) βˆ™ 5 𝑠𝑖𝑛(5π‘₯) 𝑙𝑛(𝑦) = lim+ ( ) 1 π‘₯β†’0 ( ) π‘₯ 𝑙𝑛(𝑦) = 5 lim+ ( π‘₯β†’0

π‘π‘œπ‘‘(5π‘₯) ) 1 ( ) π‘₯

𝑙𝑛(𝑦) = 5 lim+ (π‘₯ π‘π‘œπ‘‘(5π‘₯)) π‘₯β†’0

π‘₯ 𝑙𝑛(𝑦) = 5 lim+ ࡬ ΰ΅° π‘₯β†’0 π‘‘π‘Žπ‘›(5π‘₯)

1 𝑙𝑛(𝑦) = 5 lim+ ࡬ ΰ΅° π‘₯β†’0 5 𝑠𝑒𝑐 2 (5π‘₯)

𝑙𝑛(𝑦) = lim+ (π‘π‘œπ‘  2 (5π‘₯)) π‘₯β†’0

𝑙𝑛(𝑦) = 1 𝑦 = 𝑒1 𝑦=𝑒

𝐻𝑒𝑛𝑐𝑒,

1

π‘™π‘–π‘š+ (𝑠𝑖𝑛 5 π‘₯)𝑙𝑛 π‘₯ = lim+ (𝑦)

π‘₯β†’0

π‘™π‘–π‘š

π‘₯β†’0+

1 (𝑠𝑖𝑛 5 π‘₯)𝑙𝑛 π‘₯ 1

π‘₯β†’0

= lim+ (𝑒) π‘₯β†’0

π‘™π‘–π‘š+ (𝑠𝑖𝑛 5 π‘₯)𝑙𝑛 π‘₯ = 𝑒 #

π‘₯β†’0

Β© Amirah 2022

158

MAT235- CALCULUS II FOR ENGINEERS / Chapter 2 : Indeterminate Form and Improper Integral

Example 6 : MAR 2017/ MAT235/ Q2a/ 7 marks ο‚₯

Evaluate

 xe

βˆ’5x

dx .

0

Solution :

∫ π‘₯𝑒 βˆ’5π‘₯ 𝑑π‘₯

Using Tabular Integration Sign

u (differentiate)

dv (integrate)

+

π‘₯

𝑒 βˆ’5π‘₯

βˆ’

1

+

0

1 βˆ’ 𝑒 βˆ’5π‘₯ 5

1 1 ∫ π‘₯𝑒 βˆ’5π‘₯ 𝑑π‘₯ = βˆ’ π‘₯𝑒 βˆ’5π‘₯ βˆ’ 𝑒 βˆ’5π‘₯ + ∫ 0 𝑑π‘₯ 5 25 1 1 ∫ π‘₯𝑒 βˆ’5π‘₯ 𝑑π‘₯ = βˆ’ π‘₯𝑒 βˆ’5π‘₯ βˆ’ 𝑒 βˆ’5π‘₯ + 𝐢 5 25 ∞

∫ 𝑒 π‘Žπ‘₯ 𝑑π‘₯ =

1 π‘Žπ‘₯ 𝑒 +𝐢 π‘Ž

1 βˆ’5π‘₯ 𝑒 25

𝑏

∫ π‘₯𝑒 βˆ’5π‘₯ 𝑑π‘₯ = π‘™π‘–π‘š ∫ π‘₯𝑒 βˆ’5π‘₯ 𝑑π‘₯ 0

π‘β†’βˆž 0

𝑏 1 1 = π‘™π‘–π‘š [βˆ’ π‘₯𝑒 βˆ’5π‘₯ βˆ’ 𝑒 βˆ’5π‘₯ ] π‘β†’βˆž 25 5 0

=

= = = =

Β© Amirah 2022

1 π‘™π‘–π‘š [βˆ’5π‘₯𝑒 βˆ’5π‘₯ βˆ’ 𝑒 βˆ’5π‘₯ ]𝑏0 25 π‘β†’βˆž

1 π‘™π‘–π‘š [(βˆ’5𝑏𝑒 βˆ’5𝑏 βˆ’ 𝑒 βˆ’5𝑏 ) βˆ’ (0 βˆ’ 𝑒 0 )] 25 π‘β†’βˆž

1 π‘™π‘–π‘š (βˆ’5𝑏𝑒 βˆ’5𝑏 βˆ’ 𝑒 βˆ’5𝑏 + 1) 25 π‘β†’βˆž

=

βˆ’5 1 1 (0 + 1) π‘™π‘–π‘š ࡬ 5𝑏 ΰ΅° + 25 25 π‘β†’βˆž 5𝑒

=

1 βˆ’5𝑏 1 1 π‘™π‘–π‘š ࡬ 5𝑏 ΰ΅° + π‘™π‘–π‘š ΰ΅¬βˆ’ 5𝑏 + 1ΰ΅° 25 π‘β†’βˆž 𝑒 25 π‘β†’βˆž 𝑒

1 βˆ’1 1 π‘™π‘–π‘š ࡬ 5𝑏 ΰ΅° + 25 π‘β†’βˆž 𝑒 25

=βˆ’

1 1 (0) + 25 25

1 # (π‘π‘œπ‘›π‘£π‘’π‘Ÿπ‘”π‘’π‘ ) 25

159

MAT235- CALCULUS II FOR ENGINEERS / Chapter 2 : Indeterminate Form and Improper Integral

Example 7a : OCT 2016/ MAT235/ Q2b/ 4 marks

ex βˆ’ x βˆ’ 1 . x β†’ 0 cos x βˆ’ 1

Find lim

Solution :

𝑒π‘₯ βˆ’ π‘₯ βˆ’ 1 𝑒π‘₯ βˆ’ 1 βˆ’ 0 = π‘™π‘–π‘š π‘₯β†’0 π‘π‘œπ‘  π‘₯ βˆ’ 1 π‘₯β†’0 βˆ’ 𝑠𝑖𝑛 π‘₯ βˆ’ 0 π‘™π‘–π‘š

𝑒π‘₯ βˆ’ 1 = π‘™π‘–π‘š π‘₯β†’0 βˆ’ 𝑠𝑖𝑛 π‘₯

𝑒π‘₯ βˆ’ 0 π‘₯β†’0 βˆ’ π‘π‘œπ‘  π‘₯

= π‘™π‘–π‘š

𝑒π‘₯ π‘₯β†’0 π‘π‘œπ‘  π‘₯

= βˆ’π‘™π‘–π‘š

𝑒0 = βˆ’( ) π‘π‘œπ‘  0 1 = βˆ’ΰ΅¬ ΰ΅° 1 = βˆ’1 #

Β© Amirah 2022

160

MAT235- CALCULUS II FOR ENGINEERS / Chapter 2 : Indeterminate Form and Improper Integral

Example 7b : OCT 2016/ MAT235/ Q2c/ 4 marks ο‚₯

Find

 0

2x x2 + 1

dx .

Solution :

∫

2π‘₯

√π‘₯ 2 + 1

1

𝑑π‘₯ = ∫ 2π‘₯(π‘₯ 2 + 1)βˆ’2 𝑑π‘₯ 1

= ∫ 2π‘₯ π‘’βˆ’2 1

= ∫ π‘’βˆ’2 𝑑𝑒

𝑑𝑒 2π‘₯

𝑒 = π‘₯2 + 1

𝑑𝑒 = 2π‘₯ 𝑑π‘₯ 𝑑𝑒 𝑑π‘₯ = 2π‘₯

1

𝑒2 +𝐢 = 1 ( ) 2

= 2βˆšπ‘’ + 𝐢

= 2√π‘₯ 2 + 1 + 𝐢 ∞

∫

0

2π‘₯

√π‘₯ 2

+1

𝑏

𝑑π‘₯ = π‘™π‘–π‘š ∫

π‘β†’βˆž 0

2π‘₯

√π‘₯ 2 + 1

𝑑π‘₯

𝑏

= π‘™π‘–π‘š [2√π‘₯ 2 + 1] π‘β†’βˆž

0

𝑏

= 2 π‘™π‘–π‘š [√π‘₯ 2 + 1] π‘β†’βˆž

0

= 2 π‘™π‘–π‘š [βˆšπ‘ 2 + 1 βˆ’ √1] π‘β†’βˆž

= 2 π‘™π‘–π‘š [βˆšπ‘ 2 + 1 βˆ’ 1] π‘β†’βˆž

= 2[∞]

= ∞ # (π‘‘π‘–π‘£π‘’π‘Ÿπ‘”π‘’π‘ )

Β© Amirah 2022

161

MAT235- CALCULUS II FOR ENGINEERS / Chapter 2 : Indeterminate Form and Improper Integral

Example 8a : MAR 2016/ MAT235/ Q2c/ 6 marks ο‚₯

Solve the improper integrals

ex

 1+ e

x

dx . [Hint : use u substitution, u = 1 + e x ]

0

Solution :

∫

𝑒π‘₯ 𝑒 π‘₯ 𝑑𝑒 𝑑π‘₯ = ∫ βˆ™ 1 + 𝑒π‘₯ 𝑒 𝑒π‘₯ 1 = ∫ 𝑑𝑒 𝑒

= 𝑙𝑛|𝑒| + 𝐢

= 𝑙𝑛|1 + 𝑒 π‘₯ | + 𝐢

𝑒 = 1 + 𝑒π‘₯ 𝑑𝑒 = 𝑒π‘₯ 𝑑π‘₯ 𝑑𝑒 𝑑π‘₯ = π‘₯ 𝑒

∞

𝑏 𝑒π‘₯ 𝑒π‘₯ ∫ π‘™π‘–π‘š ∫ π‘₯ 𝑑π‘₯ = π‘β†’βˆž π‘₯ 𝑑π‘₯ 0 1+𝑒 0 1+𝑒

= π‘™π‘–π‘š [𝑙𝑛|1 + 𝑒 π‘₯ |]𝑏0 π‘β†’βˆž

= π‘™π‘–π‘š [𝑙𝑛|1 + 𝑒 𝑏 | βˆ’ 𝑙𝑛|1 + 𝑒 0 |] π‘β†’βˆž

= π‘™π‘–π‘š [𝑙𝑛|1 + 𝑒 𝑏 | βˆ’ 𝑙𝑛|1 + 1|] π‘β†’βˆž

= ∞ βˆ’ 𝑙𝑛(2)

= ∞ # (π‘‘π‘–π‘£π‘’π‘Ÿπ‘”π‘’π‘ )

Β© Amirah 2022

162

MAT235- CALCULUS II FOR ENGINEERS / Chapter 2 : Indeterminate Form and Improper Integral

Example 8b : MAR 2016/ MAT235/ Q2d/ 4 marks Find lim

x β†’0

1 + 2x βˆ’ 1 by using L’Hospital’s Rule. x

Solution :

1

(1 + 2π‘₯)2 βˆ’ 1 √1 + 2π‘₯ βˆ’ 1 π‘™π‘–π‘š = π‘™π‘–π‘š π‘₯β†’0 π‘₯β†’0 π‘₯ π‘₯

1 1 (1 + 2π‘₯)βˆ’2 βˆ™ 2 βˆ’ 0 = π‘™π‘–π‘š 2 π‘₯β†’0 1 1

= π‘™π‘–π‘š (1 + 2π‘₯)βˆ’2 π‘₯β†’0

= π‘™π‘–π‘š =

1

π‘₯β†’0 √1 +

1

2π‘₯

√1 + 0

= βˆ’1 #

Β© Amirah 2022

163

MAT235- CALCULUS II FOR ENGINEERS / Chapter 2 : Indeterminate Form and Improper Integral

Example 9a : SEP 2015/ MAT235/ Q1d/ 4 marks π‘₯ 2 +10 π‘₯β†’βˆž 𝑒 π‘₯ +2π‘₯

Find lim  

by using L’Hospital’s Rule.

Solution :

π‘₯ 2 + 10 2π‘₯ + 0 π‘™π‘–π‘š   π‘₯ = π‘™π‘–π‘š   π‘₯ π‘₯β†’βˆž 𝑒 + 2π‘₯ π‘₯β†’βˆž 𝑒 + 2 = π‘™π‘–π‘š  

π‘₯β†’βˆž 𝑒 π‘₯

= π‘™π‘–π‘š   π‘₯β†’βˆž

=

2 ∞

2 𝑒π‘₯

2 +0

=0#

Β© Amirah 2022

164

MAT235- CALCULUS II FOR ENGINEERS / Chapter 2 : Indeterminate Form and Improper Integral

Example 9b : SEP 2015/ MAT235/ Q2b/ 6 marks ∞

3

Solve the improper integral ∫0 π‘₯ 2 𝑒 βˆ’3π‘₯ 𝑑π‘₯. Solution :

3

∫ π‘₯ 2 𝑒 βˆ’3π‘₯ 𝑑π‘₯ = ∫ π‘₯ 2 𝑒 𝑒 βˆ™

𝑑𝑒 βˆ’9π‘₯ 2

𝑒 = βˆ’3π‘₯ 3

𝑑𝑒 = βˆ’9π‘₯ 2 𝑑π‘₯ 𝑑𝑒 𝑑π‘₯ = βˆ’9π‘₯ 2

1 = βˆ’ ∫ 𝑒 𝑒 𝑑𝑒 9 1 = βˆ’ 𝑒𝑒 + 𝐢 9 =βˆ’

∞

1 βˆ’3π‘₯ 3 𝑒 +𝐢 9

𝑏

3

3

∫ π‘₯ 2 𝑒 βˆ’3π‘₯ 𝑑π‘₯ = π‘™π‘–π‘š ∫ π‘₯ 2 𝑒 βˆ’3π‘₯ 𝑑π‘₯ 0

π‘β†’βˆž 0

= π‘™π‘–π‘š [βˆ’ π‘β†’βˆž

=βˆ’ =βˆ’ =βˆ’

1 βˆ’3π‘₯ 3 𝑏 𝑒 ] 9 0

1 3 𝑏 π‘™π‘–π‘š [ 𝑒 βˆ’3π‘₯ ]0 9 π‘β†’βˆž

1 3 π‘™π‘–π‘š [𝑒 βˆ’3𝑏 βˆ’ 𝑒 0 ] 9 π‘β†’βˆž

1 1 π‘™π‘–π‘š [ 3𝑏3 βˆ’ 1] π‘β†’βˆž 9 𝑒

1 = βˆ’ [0 βˆ’ 1] 9 =

Β© Amirah 2022

1 # (π‘π‘œπ‘›π‘£π‘’π‘Ÿπ‘”π‘’π‘ ) 9

165

MAT235- CALCULUS II FOR ENGINEERS / Chapter 2 : Indeterminate Form and Improper Integral

Example 10a : MAR 2015/ MAT235/ Q1c/ 4 marks π‘₯ 3

Find lim+   𝑙𝑛π‘₯. π‘₯β†’0

Solution :

π‘₯ 1 π‘™π‘–π‘š+   𝑙𝑛π‘₯ = π‘™π‘–π‘š+ (π‘₯ 𝑙𝑛π‘₯) π‘₯β†’0 3 3 π‘₯β†’0 =

1 𝑙𝑛π‘₯ π‘™π‘–π‘š+ ࡬ βˆ’1 ΰ΅° 3 π‘₯β†’0 π‘₯

1 ( ) 1 = π‘™π‘–π‘š+ π‘₯βˆ’2 3 π‘₯β†’0 βˆ’π‘₯ =βˆ’

=βˆ’

1 1 π‘™π‘–π‘š+ π‘₯ 2 ࡬ ΰ΅° π‘₯ 3 π‘₯β†’0

1 π‘™π‘–π‘š (π‘₯) 3 π‘₯β†’0+

1 = βˆ’ (0) 3

= 0#

Β© Amirah 2022

166

MAT235- CALCULUS II FOR ENGINEERS / Chapter 2 : Indeterminate Form and Improper Integral

Example 10b : MAR 2015/ MAT235/ Q2b/ 7 marks ∞

Solve the improper integral ∫0 π‘₯𝑒 βˆ’π‘₯ 𝑑π‘₯. Solution : ∫ π‘₯𝑒 βˆ’π‘₯ 𝑑π‘₯

Using Tabular Integration Sign

u (differentiate)

dv (integrate)

+

π‘₯

𝑒 βˆ’π‘₯

βˆ’

1

βˆ’π‘’ βˆ’π‘₯

+

0

𝑒 βˆ’π‘₯

∫ 𝑒 π‘Žπ‘₯ 𝑑π‘₯ =

1 π‘Žπ‘₯ 𝑒 +𝐢 π‘Ž

∫ π‘₯𝑒 5π‘₯ 𝑑π‘₯ = βˆ’π‘₯𝑒 βˆ’π‘₯ βˆ’ 𝑒 βˆ’π‘₯ + ∫ 0 𝑑π‘₯

∫ π‘₯𝑒 5π‘₯ 𝑑π‘₯ = βˆ’π‘₯𝑒 βˆ’π‘₯ βˆ’ 𝑒 βˆ’π‘₯ + 𝐢 ∞

𝑏

∫ π‘₯𝑒 βˆ’π‘₯ 𝑑π‘₯ = π‘™π‘–π‘š ∫ π‘₯𝑒 βˆ’π‘₯ 𝑑π‘₯ 0

π‘β†’βˆž 0

= π‘™π‘–π‘š [βˆ’π‘₯𝑒 βˆ’π‘₯ βˆ’ 𝑒 βˆ’π‘₯ ]𝑏0 π‘β†’βˆž

= π‘™π‘–π‘š [(βˆ’π‘π‘’ βˆ’π‘ βˆ’ 𝑒 βˆ’π‘ ) βˆ’ (0 βˆ’ 𝑒 0 )] π‘β†’βˆž

= π‘™π‘–π‘š (βˆ’π‘π‘’ βˆ’π‘ βˆ’ 𝑒 βˆ’π‘ + 1) π‘β†’βˆž

= π‘™π‘–π‘š ࡬ π‘β†’βˆž

= π‘™π‘–π‘š ࡬ π‘β†’βˆž

= π‘™π‘–π‘š ࡬ π‘β†’βˆž

= 0+1

βˆ’π‘ 1 ΰ΅° + π‘™π‘–π‘š ΰ΅¬βˆ’ + 1ΰ΅° π‘β†’βˆž 𝑒𝑏 𝑒𝑏 βˆ’π‘ ΰ΅° + (0 + 1) 𝑒𝑏

βˆ’1 ΰ΅°+1 𝑒𝑏

= 1 # (π‘π‘œπ‘›π‘£π‘’π‘Ÿπ‘”π‘’π‘ )

Β© Amirah 2022

167

MAT235- CALCULUS II FOR ENGINEERS / Chapter 2 : Indeterminate Form and Improper Integral

Example 11 : JUL 2020/ MAT235/ Q1c/ 7 marks 1

Use L’Hopital’s Rule to evaluate π‘™π‘–π‘š  (1 βˆ’ 2π‘₯)π‘₯ . π‘₯β†’0

Solution :

1

𝑙𝑒𝑑 𝑦 = (1 βˆ’ 2π‘₯)π‘₯

1

𝑙𝑛(𝑦) = 𝑙𝑛(1 βˆ’ 2π‘₯)π‘₯

1 𝑙𝑛(1 βˆ’ 2π‘₯) π‘₯ 𝑙𝑛(1 βˆ’ 2π‘₯) 𝑙𝑛(𝑦) = π‘₯ 𝑙𝑛(𝑦) =

π‘™π‘–π‘š (𝑙𝑛(𝑦)) = π‘™π‘–π‘š ( π‘₯β†’0

π‘₯β†’0

𝑙𝑛(1 βˆ’ 2π‘₯) ) π‘₯

1 βˆ™ βˆ’2 1 βˆ’ 2π‘₯ 𝑙𝑛(𝑦) = π‘™π‘–π‘š ( ) π‘₯β†’0 1 βˆ’2 𝑙𝑛(𝑦) = π‘™π‘–π‘š ࡬ ΰ΅° π‘₯β†’0 1 βˆ’ 2π‘₯ βˆ’2 𝑙𝑛(𝑦) = 1βˆ’0 𝑙𝑛(𝑦) = βˆ’2

𝑦 = 𝑒 βˆ’2

𝐻𝑒𝑛𝑐𝑒,

1

π‘™π‘–π‘š (1 βˆ’ 2π‘₯)π‘₯ = π‘™π‘–π‘š (𝑦)

π‘₯β†’0

1 π‘™π‘–π‘š (1 βˆ’ 2π‘₯)π‘₯ π‘₯β†’0 1

π‘₯β†’0

= π‘™π‘–π‘š (𝑒 βˆ’2 ) π‘₯β†’0

π‘™π‘–π‘š (1 βˆ’ 2π‘₯)π‘₯ = 𝑒 βˆ’2

π‘₯β†’0

1

π‘™π‘–π‘š (1 βˆ’ 2π‘₯)π‘₯ = 0.1353 #

π‘₯β†’0

END OF CHAPTER 2

Β© Amirah 2022

168

Data Loading...